Functionalization of α-synuclein fibrils

نویسندگان

  • Simona Povilonienė
  • Vida Časaitė
  • Virginijus Bukauskas
  • Arūnas Šetkus
  • Juozas Staniulis
  • Rolandas Meškys
چکیده

The propensity of peptides and proteins to form self-assembled structures has very promising applications in the development of novel nanomaterials. Under certain conditions, amyloid protein α-synuclein forms well-ordered structures - fibrils, which have proven to be valuable building blocks for bionanotechnological approaches. Herein we demonstrate the functionalization of fibrils formed by a mutant α-synuclein that contains an additional cysteine residue. The fibrils have been biotinylated via thiol groups and subsequently joined with neutravidin-conjugated gold nanoparticles. Atomic force microscopy and transmission electron microscopy confirmed the expected structure - nanoladders. The ability of fibrils (and of the additional components) to assemble into such complex structures offers new opportunities for fabricating novel hybrid materials or devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prion-like spreading of pathological α-synuclein in brain

α-Synuclein is the major component of filamentous inclusions that constitute the defining characteristic of neurodegenerative α-synucleinopathies. However, the molecular mechanisms underlying α-synuclein accumulation and spread are unclear. Here we show that intracerebral injections of sarkosyl-insoluble α-synuclein from brains of patients with dementia with Lewy bodies induced hyperphosphoryla...

متن کامل

An Efficient Procedure for Removal and Inactivation of Alpha-Synuclein Assemblies from Laboratory Materials

BACKGROUND Preformed α-synuclein fibrils seed the aggregation of soluble α-synuclein in cultured cells and in vivo. This, and other findings, has kindled the idea that α-synuclein fibrils possess prion-like properties. OBJECTIVE As α-synuclein fibrils should not be considered as innocuous, there is a need for decontamination and inactivation procedures for laboratory benches and non-disposabl...

متن کامل

Neuron-to-neuron transmission of α-synuclein fibrils through axonal transport.

OBJECTIVE The lesions of Parkinson disease spread through the brain in a characteristic pattern that corresponds to axonal projections. Previous observations suggest that misfolded α-synuclein could behave as a prion, moving from neuron to neuron and causing endogenous α-synuclein to misfold. Here, we characterized and quantified the axonal transport of α-synuclein fibrils and showed that fibri...

متن کامل

Seeking a Mechanism for the Toxicity of Oligomeric α-Synuclein

In a number of neurological diseases including Parkinson's disease (PD), α-synuclein is aberrantly folded, forming abnormal oligomers, and amyloid fibrils within nerve cells. Strong evidence exists for the toxicity of increased production and aggregation of α-synuclein in vivo. The toxicity of α-synuclein is popularly attributed to the formation of "toxic oligomers": a heterogenous and poorly c...

متن کامل

Studies of the aggregation of an amyloidogenic α-synuclein peptide fragment

The deposition of α-syn (α-synuclein) fibrils in Lewy bodies is a characteristic feature of individuals with neurodegenerative disorders. A peptide comprising the central residues 71–82 of α-syn [α-syn(71–82)] is capable of forming β-sheet-rich, amyloid-like fibrils with similar morphologies to fibrils of the full-length protein, providing a useful model of pathogenic α-syn fibrils that is suit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015